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Abstract

Surprisingly large polarizations in hyperon production have been known for a

long time. The spin dynamics of the production process can be further inves-

tigated with polarized beams. Recently, a negative asymmetry AN was found

in inclusive �0 production with a 200 GeV/c transversely polarized proton

beam. The depolarization DNN in p " +p! �0+X has been measured with

the same beam over a wide xF range and at moderate pT . DNN reaches pos-

itive values of about 30 % at high xF and pT � 1:0 GeV/c. This result shows

a sizeable spin transfer from the incident polarized proton to the outgoing �0.

PACS numbers: 13.88.+e, 13.85.Ni, 14.20.Jn
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The observation 20 years ago of a large negative polarization in inclusive �0 production

by an unpolarized proton beam at 300 GeV/c [1] renewed interest in spin as an important

factor in high-energy hadron interactions. Afterwards several experiments measured large

polarizations for various hyperons over a wide kinematical range [2]. Previous expectations,

based on Regge theory and QCD predictions, were that spin e�ects would vanish at high en-

ergies, since the smallness of spin-ip amplitudes and the contribution of several production

channels to an inclusive process with large multiplicity of �nal states make it unlikely to

have the coherent interference between spin non-ip and spin ip amplitudes that leads to

sizeable polarization e�ects. Recently, a signi�cant negative analyzing power AN has been

found at 200 GeV/c in inclusive �0 production by a transversely polarized proton beam at

high xF and moderate pT (pT � 1 GeV/c) [3]. Large AN values have been also found in

inclusive pion production with the same proton and antiproton polarized beam [4,5].

Di�erent quark-parton models using static SU(6) wave functions were proposed to in-

terpret these polarization e�ects by introducing a spin dependence into the partonic frag-

mentation and recombination processes [6{8]. The �0 polarization is attributed to some

mechanism, based on semiclassical arguments [6,7] or inspired to QCD [8], by which strange

quarks produced in the fragmentation process acquire a large negative polarization. The

features of the pion AN data [4,5] are compatible with these models, provided that this

e�ect occurs also for up and down quarks. The spin dynamics of these processes can be fur-

ther investigated using polarized proton beams. In the previous models no correlation with

the incident proton polarization is expected in inclusive �0 production, since the �0 spin is

carried entirely by its constituent strange quark and the ud di-quark (which is in a spin and

isospin singlet state) propagates unperturbed as a spectator in the interaction. Therefore

spin asymmetries related to the beam polarization are expected to vanish. The negative

asymmetry AN observed in �0 production [3] is di�cult to integrate in this picture unless

the spectator ud di-quarks play a more signi�cant role in the recombination process than

generally expected [9]. Studies of other spin asymmetries in high energy hyperon production

add further input to understand these phenomena.
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In this Letter we report on the measurement of the depolarization parameter DNN

in inclusive �0 production with the 200 GeV/c Fermilab polarized proton beam [10] and

a 1.0 meter long liquid hydrogen target in the kinematical range 0:2 � xF � 1:0 and

0:1 � pT � 1:5 GeV/c. The double-spin parameter

DNN =
E d3�

dp3

""

� E d3�

dp3

"#

E d3�

dp3

""

+ E d3�

dp3

"#

measures the fraction of the incident proton polarization transferred to the inclusively

produced �0. E d3�

dp3

"" ("#)
is the spin-dependent di�erential cross-section for the process

p " + p ! �0
" + X with parallel (anti-parallel) spin con�gurations for the incident

proton and the outgoing �0, both polarizations being orthogonal to the production plane.

The transversely polarized proton beam contained simultaneously protons of opposite

tagged polarizations. This considerably suppressed systematic e�ects. The average beam

polarization was 0:46 � 0:03 for both signs. Typical beam intensities at the experimental

target were of the order of 2�107 polarized protons per 20 second spill.

�0 hyperons produced at the experimental target were identi�ed by reconstructing their

decay �0
! p��. Charged particles were measured in a forward spectrometer, described

in Refs. [3,4], equipped with 42 multi-wire proportional planes and a 3 T-m
R
Bdl dipole

analyzing magnet. A threshold Cherenkov counter, C1, downstream of the magnet, was

used for proton identi�cation.

Secondary �0 decay vertices (V 0's) were searched by combining proton tracks identi�ed

by C1 with negatively charged tracks assuming that they were ��'s [3]. It was required that:

(1) the closest distance in space of the two tracks was < 2 mm and that the V 0 decay vertex

was located between 20 cm and 540 cm downstream of the target end; (2) the V 0 came from

the target and matched there the beam impact point within 2 mm in the transverse plane;

(3) the V 0's populated the decay phase space region corresponding to �0 decays, bounded

by 0:45 < (p+L �p
�

L )=(p
+
L +p

�

L ) < 0:95 and qT = q+T = q�T < 0:12 GeV/c, where p+L (p�L) is the

longitudinal component of the positive (negative) track momentum and qT is the transverse

component of these momenta with respect to the V 0 line of ight.
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These selection cuts led to a clean �0 peak in the p�� invariant mass spectrum, centered

at 1.116 GeV/c2 with a width � = 1:7 MeV=c2 and an estimated 2 % uniform background

below the �0 peak, as most sources of background were suppressed by the vertex �ducial

volume cut, the selection of the �0 decay phase space region, and K0
S ! �+�� decays were

rejected by C1. We selected �0's in a mass window of �5:1 MeV/c2 about the peak. For

the DNN analysis we required additionally that the �0's were produced to the beam right

in the azimuthal angular interval of �60� from the horizontal plane around the beam axis.

A sample of about 40,000 �0's was thus selected.

For each xF and/or pT bin, the double-spin parameter DNN was extracted from the �0

decay proton angular distribution in the �0 rest frame by de�ning 4 sets of events, integrating

the decay proton angular distribution above and below the �0 production plane for the two

opposite beam polarizations separately. DNN is then obtained from the asymmetry:

DNN =
1

PBhcos �V i

2

��

�
N+
up +N�

down

�
�

�
N�

up +N+
down

�
�
N+
up +N�

down

�
+

�
N�

up +N+
down

�

where, for instance, N+
up is the number of �

0's produced by beam protons polarized upward

and emitting decay protons in the positive hemisphere with respect to the normal to the

production plane. PB is the proton beam polarization, �V is the angle between the beam

polarization axis directed upward and the normal to the production plane (hcos �V i � �0:85

in the selected azimuthal range), and �� = 0:642 is the �0 decay asymmetry.

The DNN results thus obtained, are independent, to a good accuracy, of apparatus and

reconstruction biases, since �0's were measured with the same apparatus and opposite beam

polarizations simultaneously. For a check of systematic biases we evaluated DNN for non-

�0 events (p�� combinations outside of the �0 mass window and K0
S), and we found that

DNN = 0:007 � 0:039 for these background events. We also evaluated the �0 polarization

by averaging over opposite beam polarizations and found a good agreement with existing

polarization results.

The depolarization DNN is given in Table 1 and shown in Figure 1 as a function of

pT averaged over the xF interval of 0.2{1.0. DNN increases with pT to signi�cantly large
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positive values with an indication of attening in pT above 1.0 GeV/c, while at low pT values

it is compatible with zero. Figure 2 and Table 2 show the double-spin parameter DNN as

a function of xF averaged over the pT interval of 0.1{1.5 GeV/c. At large xF values DNN

reaches positive values as large as 30 % at pT � 1 GeV/c (see also Table 1 rows 6{11, where

the pT dependence is shown for two separate xF intervals), while almost no dependence in xF

is observed for xF < 0:6, where DNN is compatible with zero or slightly positive. In Figure 3

the DNN data are split into two pT intervals and plotted as a function of xF . At low pT they

appear to be essentially zero, while in the high pT bin they show large positive values. A few

DNN measurements in inclusive �0 production were previously performed with polarized

proton beams at much lower energies of 6 GeV/c [11], 13.3 GeV/c and 18.5 GeV/c [12].

Figure 2 shows also data obtained at 18.5 GeV/c for a bin about hpT i � 1:0 GeV=c [12].

These data appear to be compatible with zero over the measured range, which however

doesn't extend above xF � 0:5. More recently, a sizeable spin transfer has been inferred

in 
� production by high energy neutral beams containing transversely polarized �0's and

�0's [13].

The kinematical dependence of present DNN results shows, in magnitude, a behavior

similar to the hyperon polarization [2]. The observed DNN results, as in the case of the AN

data in inclusive �0 production [3], cannot however be directly obtained from a mechanism

such as proposed to explain the �0 polarization [6{8], where a highly polarized strange

quark produced in the fragmentation process recombines with an unpolarized ud spectator

di-quark from the incident proton independently of its polarization. Our results indicate a

substantial spin transfer from the incident polarized proton to the inclusively produced �0

as large as 30 % at high xF (xF > 0:6) and pT � 1 GeV/c.

More recent models based on non-perturbative approaches and peripheral mechanisms

with an underlying quasi-binary subprocess, such as a � exchange mechanism [14], or

resonance-decay interference between real and virtual channels [15], were proposed to ex-

plain the �0 polarization. These models might also accomodate a more substantial spin

dependence in the �0 production process, such as the one shown by the present data. A
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model, based on the idea of rotating constituents in polarized protons [16], is fairly success-

ful in accounting for the observed AN behavior in pion production. This model appears to

reproduce qualitatively also the �0 analyzing power and the DNN data presented in this

Letter.
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TABLES

TABLE I. DNN data for p " +p! �0 +X as a function of pT (the errors are statistical only;

systematic errors were estimated to be negligible compared to statistical ones).

pT interval (GeV=c) DNN hxF i hpT (GeV=c)i

0:2 � xF � 1:0

0.1{0.3 �0:05� 0:12 0.42 0.23

0.3{0.5 �0:035� 0:074 0.49 0.41

0.5{0.7 0:147� 0:071 0.56 0.60

0.7{1.0 0:216� 0:081 0.61 0.82

1.0{1.5 0:26� 0:17 0.66 1.13

0:2 � xF � 0:5

0.1{0.4 �0:03� 0:10 0.38 0.29

0.4{0.6 0:14� 0:11 0.40 0.49

0.6{1.0 0:20� 0:13 0.42 0.74

0:5 � xF � 1:0

0.5{0.7 0:09� 0:09 0.65 0.60

0.7{1.0 0:24� 0:09 0.67 0.82

1.0{1.5 0:31� 0:18 0.69 1.14
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TABLE II. DNN data for p " +p! �0 +X as a function of xF (the errors are statistical only).

xF interval DNN hxF i hpT (GeV=c)i

0:1 � pT � 1:5 GeV=c

0.20{0.35 0:03� 0:13 0.30 0.41

0.35{0.45 0:039� 0:093 0.40 0.49

0.45{0.55 0:079� 0:082 0.50 0.57

0.55{0.65 0:081� 0:085 0.60 0.64

0.65{0.80 0:148� 0:086 0.71 0.71

0.80{1.0 0:35� 0:16 0.85 0.79

0:1 � pT � 0:6 GeV=c

0.2{0.4 �0:05� 0:11 0.33 0.37

0.4{0.6 0:01� 0:08 0.49 0.42

0.6{0.8 �0:02� 0:11 0.68 0.47

0:6 � pT � 1:5 GeV=c

0.3{0.5 0:17� 0:12 0.43 0.77

0.5{0.7 0:19� 0:09 0.60 0.81

0.7{1.0 0:37� 0:11 0.79 0.84
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FIG. 1. DNN data as a function of pT .
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FIG. 2. DNN data as a function of xF . Also shown are DNN measurements at 18.5 GeV/c

from Ref. [12] (hpTi � 1:0 GeV=c for the plotted points).
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FIG. 3. DNN data as a function of xF divided into two pT intervals of 0:1 � pT � 0:6 GeV=c

(open squares) and 0:6 � pT � 1:5 GeV=c (full squares).
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